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ABSTRACT 
 

The consumption driven population dynamics (CDPD) model, described and 

demonstrated in my previous paper (Bentley, 2006), suggests a fundamental 
structure connecting all life produced by simple, independent mechanisms for 

mass gain and loss that are determined by those constraints of natural law 

governing transfers of mass and energy.  This basic system may be modified 
to a greater or lesser degree by additional mechanisms that account for living 

and nonliving elements of the environment, much of which is stochastic.  

Collectively, this accounts for the broad range of population dynamics we 

observe within the web of linkages connecting all living things.   
 

CDPD implies that mortality has a much greater influence on the dynamic 

than previously considered.  While this is certainly no surprise to those doing 
field research, mortality has not been properly addressed in prior population 

models.  A population subject to hard times, very low consumption or 

extreme environmental conditions, can suffer losses at rates that are orders 
of magnitude greater than rates of gain under the most favorable conditions.  

CDPD exhibits this dynamic under harsh conditions.   
 

The ‘CDPD response’, a biologically derived model of consumption functional 

response that may be used in conjunction with the CDPD model, introduced 

but never exercised in the previous paper, is demonstrated to show the 

effects of past consumption.  The ‘CDPD response’ is explored in the effort to 
more completely understand how past consumption may help explain certain 

observations.   
 

While scenarios driven by consumption appear to explain single peak events 

and seasonal oscillations, environmental effects aside from consumption 

produce stable aperiodic oscillations with characteristics highly similar to the 
great majority of extended time series data contained in the NERC database. 
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INTRODUCTION 
 

This paper continues the exploration of the consumption driven population 
dynamics (CDPD) model (Bentley, 2006).   

 

Population gains and losses are driven by environmental conditions.  Those 
aspects of environment explicitly defined in CDPD as contributing directly to 

a population’s level of consumption, specifically a resource population, 

constitute an essential component of environment with a dynamic of its own 
that CDPD deals with separately from all other impacts of environment.  

Consumption is dependent both upon resource level and upon a population’s 

‘predation proficiency’ which in large part is contingent upon the predation 

environment.  Consumption, or more  precisely level of consumption, can 
produce an overall population dynamic anywhere from rapid growth to an 

even more rapid population decline.  This is why I use the words 

‘consumption driven’ in the title of both papers.   
 

The concept of ‘predation proficiency’ introduced by CDPD, the ability of a 

population to acquire its sustenance, and which can change in value subject 
to a wide range of mechanisms, is an element not offered in previous 

models.  One might argue that the effects of predation proficiency can be 

emulated by 'predator efficiency', and by other variables used in previous 

models.  But this does not provide the gain in understanding that results 
from an explicit proposal of predation proficiency, and the definition of Rp in 

terms of biological mechanism, and corresponding use of Rp in the formulary 

describing each population within a system.  Predation proficiency in the 
CDPD model plays a pivotal role in population dynamics when combined with 

proper mechanism for mortality.  It produces a dynamic closely matching the 

dynamic observed in nature, and does so for reasons concluded from the 

data of Beschta (2003), Ripple (2004), Nelson et al. (2004), and others.   
 

While loss of resource can be devastating, changes in those elements of a 

population’s environment that do not contribute directly to consumption can 
have an equally dramatic impact upon a population and do so in a manner 

equivalent to the effects generated by consumption.  Mortality for many 

populations increases under conditions of extreme weather events or 
disease, and may increase in spectacular form in the face of a volcanic 

eruption, asteroid impact, or the simple draining of a wetland.    

 

Population increase proceeds at a reproductive rate consistent with the level 
of consumption currently available and whatever environmental conditions 

currently exist.  While a population under favorable conditions may increase 

at seemingly alarming rates, that same population faced with extremely 
adverse conditions will drop precipitously.  This rate of decrease, an aspect of 

the natural dynamic frequently observed, can be orders of magnitude greater 

than any possible rate of increase, proceeding rarely even to extinction.   
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This strongly suggests that mortality, rather than fecundity, dominates the 

natural dynamic.  A correct model of population dynamics must include a 
mechanism that replicates this response.   

 

The CDPD inverse dependence of mortality upon consumption and upon 

other environmental factors emulates just such an accelerating response to 
degenerating conditions with mortality rising rapidly if consumption 

approaches zero or environmental conditions turn lethal.  This is a 

fundamental property of CDPD. 
 

This marks a clear difference between CDPD and earlier models, compiled in 

such works as Population Ecology: First Principles by John H. Vandermeer 
and Deborah E. Goldberg (2003).  Most models treat loss as a simple 

constant fraction of population, in good times and in bad.  A few models, 

Anderson-May (1978), Hanski et al. (1991), and others use an inverse of the 

resource population in their mortality functions, but generate abnormally low 
mortality in the presence of excess resource.   

 

 

The CDPD Population Model Reiterated 
(See Bentley, 2006, for a full definition of all variables and constants.) 

 
CDPD is a logical construct enabling a comprehensive accounting of all forces 

acting upon individual life forms, and upon those aggregates of individuals 

we call populations, whether considered in their entirety upon the planet, or 

local as delineated in any manner natural or otherwise.   
 

CDPD is implemented as a difference equation where all functions are 

evaluated at discrete time intervals [∆t = 1 time increment].  The following 

well known simple relationship accounts for all possible gains and losses.  
 

         N t+1 = N t + B – D           …where all terms have units of mass. 
 

         N t+1 = N t + B – D + IE   …for an unbounded system  

 

Gains B and losses D are summed to establish change in N for the next 
iteration.  Mechanisms for B and D are quite different.  In a bounded system, 

gain under constant conditions of consumption and environment as defined 

below will be a constant fraction of the population N.  In that same bounded 
system, loss as defined below is composed of two mechanisms, losses in the 

absence of predation Q which I term natural losses, and losses due to 

predation P.  In CDPD, using this discrete time approach, losses during a 
time increment are each calculated separately, but then must be combined 

using an overlap function to calculate D because predation losses will replace 

some natural loss over the course of a time increment.   

 
Aside from immigration minus emigration IE in an unbounded system, there 

are no other mechanisms for gains and losses additional to those just stated.  
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At its base the CDPD model requires 5 parameters, Rb, Rq, Rc, Rp, and Kd.  

If one wishes to introduce the effects of environment and stochastic forces 
then one needs to add E.  To differentiate the environment for gain, loss and 

consumption then you need to replace E with Eb, Eq, and Ec.  However, 

throughout both the original paper and this current paper I have used E only 

for stochastic runs of the model by inserting random values for E.  
Deterministic runs set E to a value of 1 thus removing E from the model.  

 

You will find in the relationships below a much greater number of parameters 
and this can be a source of confusion.  For example, Rp is represented as a 

product of terms Ec, Kp/Ka, Rs, and Ri, offered as elements of the system 

that may be useful to those making a more detailed study.  It could easily be 
argued that Rs and Ri should simply be included in Ec, or perhaps some even 

greater number of environmental aspects should be dissected out for special 

treatment.  However, in this work I have simply used singular values for Rp 

to represent the product of all elements that collectively produce Rp.   
 

Parametric analysis shows the nature of the model dynamic hinges upon the 

value of Rp.  Above a threshold the dynamic changes from steady state to 
collapse.  While the other parameters change equilibrium populations, or 

peak values in the case of collapse, and while they can also shift the 

threshold for collapse, they do not otherwise fundamentally change the 
nature of the dynamic.   

 

Another potential source of confusion is my additional model for a biologically 

derived consumption functional response I call the CDPD response.  My first 
CDPD paper introduced this model which allows the inclusion of time lagged 

past consumption.  Portions of this paper demonstrate how the CDPD 

response affects the dynamic for both steady state and collapse scenarios.  
However, this additional complexity is unnecessary to demonstrate a full 

range of the CDPD dynamic from equilibrium to collapse and the validity and 

usefulness of CDPD does not depend upon its inclusion.   
 

Within all populations of living things, just as within individual organisms and 

human infrastructure, there exist concurrent processes of building up and 

tearing down.  These processes are quite different.  Growth is directly driven 
by the amount of resource applied to growth, and further affected, for better 

or worse, by all other elements in the environment.   
 

Within a bounded system there is only a single mechanism for mass gain.  
 

FECUNDITY – mechanism for ALL mass gain in a bounded system 
 

B = (total mass gain during time increment) 

B = N t·Rb·(C·Eb) 

        Rb=(fractional gain at (C·Eb)=1.  Rb is a constant.) 
        Eb=(environment for births) 
 

In nature B may not be a linear function, nor Q a simple inverse.  But likely 

values for B and Q at C=0 and C=1 make B and Q a good place to start.   



 

5 

Non-predation MORTALITY 
 

Q = (non predation mass loss due to natural causes during time increment) 
Q = N t·Rq/(C·Eq)                      ...conditional to [If  (C·Eq)=0  then  N t+1=0] 
        Rq=(fractional loss at (C·Eq)=1.  Rq is a constant.) 

        Eq=(environment for deaths) 
 

CONSUMPTION – current fraction of satiation [0≤C≤1]  (Unitless) 
 

C = (Rp·Neaten)/(Rc·Neater)     ...conditional to [if  C>1  then  C=1] 

        Rp=(predation proficiency)               (Unitless) 
        Rp=Ec·Rs·Ri·(Kp/Ka)                        (Unitless) 

              Ec=(environment for predation)  (Unitless) 

              Rs=(food source quality)            (Unitless) 
              Ri  =(predator interference)         (Unitless) 

              (Kp/Ka) variables described under CDPD response further on. 

        Rc =(satiation consumption ratio in units of Prey/Predator) 
 

CORRECTION (Bentley, 2006):  Rs and Rp are unitless. Rc has units of Nprey/Npredator 
(a simple mass ratio).  This does NOT change the results presented in that paper. 

 

The CDPD model provides for easy incorporation of environmental 

mechanisms, both biotic and abiotic, affecting gain [Eb], loss [Eq], and the 
predation environment [Ec] thus allowing the modeling of the great multitude 

of scenarios found in nature.   
 

[Eb, Eq]  All elements of Environment Other Than for Consumption 

[Ec]       All elements of Predation Environment EXCEPT Neaten 
 

E = 1  in a nominal environment, but can range from E=0 to E>1 
E = f(environmental factors of interest)   (Unitless) 
 

Predation MORTALITY 
 

P = (mass loss during time increment due to predation) 

P = Cp·Rcp·Npredator      …where Cp and Rcp are predator C and Rc 
 

In a bounded system there are two mechanisms for loss.  There is natural 

mortality Q, a function of species and environment, and there is predation P, 

a function of the predator.  Natural mortality Q can change precipitously 
under conditions of a very bad environment (Eq<<1) or low consumption 

(C<<1).  Even a run of middling consumption combined with an equal span 

of less than ideal environment can have a devastating effect on a population.   
 

Total MORTALITY – ALL mass loss in a bounded system 
 

D = (total mortality, mass loss during time increment) 
D = (1–Kd)·(P+Q)+Kd·(P+Q+|P–Q|)/2    ...for [0≤Kd≤1]  (Kd is Unitless)  

       Kd = (predator propensity to kill prey close to a natural death) 
 

Within the CDPD model total mass loss D is calculated using a function that 

accounts for the overlap of predation loss P with natural loss Q; loss that, 

would, absent predation, otherwise have occurred during the time increment, 
such that the overlap of these two sets is not counted twice.  Kd sets the 

amount of overlap.   
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IMMIGRATION minus EMIGRATION (unbounded mass gain or loss) 
 

IE = (Immigration – Emigration) = IM–EM 
IE = IE1+IE2+IE3+IE4+…+IEi         ...mass flow to or from connected populations Ni 

       IEi = Z·(C-Ci)·([C>Ci]·WIMi·Ni+[Ci>C]·WEMi·N)        …for TRUE=1, FALSE=0 

               Z =(Unitless scaling factor specific to population) 

               W=(Unitless scaling factor specific to environment for IM or EM) 
 

The function for calculating IE based on relative consumption (C-Ci) has been 
described in detail in my preceding CDPD paper (Bentley, 2006).  Z is the 

population’s nominal movement in response to (C-Ci).  WIMi and WEMi are 

factors of difficulty for movement to or from a particular adjoining area.   
 
 

Subdividing the Time Increment 
 

One may wish to change the model time increment to some subdivision of 

the original increment.  This allows one to enter effects that occur at a finer 
scale, perhaps seasonal change or other mechanism that would not be 

observed at the original increment size.  This is accomplished as follows:   
 

B = FRACTION · N t·Rb·(C·Eb) 
 

Q = FRACTION · N t·Rq/(C·Eq) 
 

P = FRACTION · Cp·Rcp·Npredator 

IE = FRACTION · (IE1+IE2+IE3+IE4+…+IEi) 
 

       FRACTION = 1/(number of increment subdivisions) 
 

This simple approach does not take into account the effect of compounding 
rates of increase and decrease and this may be observed in the approach to 

a steady state.  However, the deterministic steady state produces exactly the 

same final population values.   
 

 

R versus Consumption   See *Footnote. 
 

When one wishes to examine some process causing changes in a variable 
over time, population for example, one may present the problem using a 

difference equation as shown below.  This simple approach, often in the form 

of a differential equation, has been used in most attempts to model 

populations prior to CDPD.   
 

          N t+1 = r·N t        where  r = (multiplier at each time increment). 
 

For r=1 the population neither increases nor decreases.  Setting  r=(1+R)  
the above equation may be rewritten as: 
 

 
          N t+1 = N t + R·N t      …Compare this to the CDPD form: 

          N t+1 = N t + B – D     …where  B=N t·Rb·(C·Eb)  and, ignoring  

                                            predation for the moment,  D=N t·Rq/(C·Eq). 
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Ignoring also Eb and Eq [by setting Eb=1 and Eq=1], we can write: 
 

     R = Rb·C – Rq/C            …This is RCDPD=f(C) for CDPD. 
 

The functions for R in most prior population models (see Turchin, 2003; 

Vandermeer and Goldberg, 2003) assume mortality to be a constant fraction 

of population (RqnonCDPD) similar to the function below.  
 

     R = Rb·C – RqnonCDPD     …This is RnonCDPD=f(C) for most prior models.   
 

Applying either of these functions to a steady state scenario will produce very 

similar results; equilibrium.  With stochasticity even the initial rise or fall to 
the steady state makes the two approaches indistinguishable.   
 

But, if you apply both of these functions to the single peak collapse (high Rp) 

with its consequent greater consumption C, the dynamic is quite different:   
 

  Figure 1 
 

 
 

In CDPD the second trophic level population drops to zero when resource is 
totally consumed.  In the ‘constant loss’ function used in most prior models 

the second trophic level population persists long after both resource and 

consumption have dropped to zero.   Constant loss is a very bad simplifying 
assumption, unsupported by observation and in violation of thermodynamics. 

 
 

Vertical axis labeled C represent population consumption levels between 0 and 1 (satiation).  
Vertical axis labeled N represent population levels in units of mass.  Populations NV 
(vegetation), NH (herbivore), and NP (predator), a trophic cascade, are scaled independently 
to clearly show the relational dynamic between populations, the subject of interest in this 
generic study of the fundamental interactions between all living things.  
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Parametric Analysis 
 

Logic dictates that Rq (the minimum fractional mass decrease during a time 

increment) must be less than Rb (the maximum fractional mass increase 

during a time increment).  A violation of this necessarily leads to collapse and 
would not be a property of any viable population.  Thus, we can say with 

certainty that  Rq<Rb.  And, Bpredator(mass)<Pprey(mass) due to losses 

that go to maintenance.  A bit of algebraic manipulation using the CDPD 

relationships yield Rb<Rc, therefore  Rq<Rb<Rc.   
 

The following parameters were examined at the second level of a 3 trophic 
cascade (V,H,P), thus all variables have an extension of H. 
 

    Rb (0.5 - 5.0) 
 

At RpH=0.3 the CDPD model produces a steady state dynamic over the 

entire range.  The NH steady state population mass goes from 275.5 to 
1133.8, but over that same range steady state consumption drops from 

CH=0.93 to CH=0.20.   Rc was set to 10 at all trophic levels to remain 

consistent with Rb<Rc. 
 

At RpH=0.7 the CDPD model produces a collapse dynamic in which 

populations NH and NP rapidly drop to zero.  NHmax, the peak height of NH, 
goes from 363 at RbH=0.5 to 3549 at RbH=5.  Despite the higher peak as 

RbH goes from 0.5 to 5, the NH population reaches peak in fewer and fewer 

time increments.   
 

    Rq (0.2 – 0.02) 
 

At RpH=0.3, model runs at Rq=0.2 and Rq=0.02 display a steady state 

dynamic, the difference appearing as much higher population mass levels at 

RqH=0.02 due to the drop in mortality.  Populations would have climbed to 
even higher levels if not for the fact that these higher population masses 

lower the relative availability of resource, lowering consumption levels as 

revealed by the values for CV, CH, and especially CP because NP has no 
losses to higher trophic level predation in this limited 3 level cascade. 
 

At RpH=0.7, runs at Rq=0.2 and Rq=0.02 both display a collapse scenario. 
RpH=0.7 is a value sufficiently higher than the actual threshold for collapse 

to clearly demonstrate a sharp break.  Once again there were higher peak 

population mass levels due to decreased mortality at Rq=0.02.   
 

    Rp  over total range (0<Rp<1) 
 

Examination of the other 4 parameters makes it is very clear that the CDPD 

dynamic transitions from stability to collapse when Rp exceeds a threshold 

between 0 and 1.  This threshold generally resides in the area of Rp=0.35, 
but can be higher or lower depending on parameters.  
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    Kd  over total range (0≤Kd≤1) 
 

At RpH=0.3 the CDPD model produces a steady state dynamic for KdH=0 to 

KdH=1.  As Kd goes from 0 to 1 all steady state population masses increase, 

but over this same range consumption for NV and NH drops to 0.63. 
 

At RpH=0.7 the CDPD model produces a collapse dynamic in which all 

populations rapidly drop to zero.  As Kd goes from 0 to 1 all peak maximums 
increase.  As KdH approaches 1 the peak maximums not only increase, but 

do so in far fewer time increments.   
 

For both the steady state and collapse phase, the transition from KdH=0 to 

KdH=1 results in increasingly greater population equilibrium levels for the 

steady state and peak levels in collapse. This is particularly apparent at the 
NH trophic level. The difference between the NH level and the NP level is the 

absence of predators at the NP level in this limited cascade. 
 

    Rc (1 - 100) 
 

RcH was examined at RpH=0.33 which generated the steady state over the 

entire 2 order of magnitude range for RcH.  At RpH=0.7 the dynamic 

consistently collapsed in a single peak event for all values of RcH. 
 

Rc determines the ratio of maximum mass transfer from one trophic level to 

the next during a given time increment and any change in the value of Rc 
must be reflected in the viable range of values that may be assigned NA, the 

base mass available to the primary producer which accounts for base input of 

mass and energy to the system during each time increment.  Increase in Rc 

is directly reflected as an increase in mass differences between trophic levels.   
 

    E (Eb,Eq,Ec)  (with values from 0 to something greater than 1)  
 

E values act within the CDPD model much like the value of C.  E has not been 

used in this or the previous paper except to introduce stochasticity into 

specified model runs.  While environment is extremely important in ecological 
scenarios, it does not alter the fundamental nature of the underlying 

consumption driven dynamic.  
 
 

The CDPD response (Consumption Functional Response according to CDPD) 
 

The CDPD response is derived from biology as described in my previous 

paper (Bentley, 2006).  It is a model separate from and not required by the 
CDPD model of population dynamics.   
 

For any level of prey, predators, and Rc, predation proficiency Rp sets the 
level of consumption C.  And, Rp=Ec·Rs·Ri·(Kp/Ka) where (Kp/Ka) contains 

the terms for time lagged past consumption by predator (Kp) and prey (Ka).  

Kp=Gp·CP and Ka=Ga·CA where CP represents the effect of predator’s past 
consumption on ability to predate, and CA represents the effect of prey’s past 
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consumption on ability to avoid predation.  Rk=Gp/Ga represents the base 

ratio of predator to prey ability, thus (Kp/Ka)=Rk·(CP/CA).   
 

CP=CPlow·CPhigh, where CPlow represents predator’s decreased ability to 

predate due to a relatively long period of insufficient past consumption 
(starvation),  while CPhigh represents the combined effect of predator’s 

decreased ability (physical effects of gorging) and motivation to predate 

under conditions of recent high consumption (satiety).  CPhigh produces the 
gradual approach to C=1 characteristic of a Type-II response.   
 

CPlow  = 1/(1+SPlow·((1/CpredatorPrior1)–1)) 
 

CPhigh = SKp+(1–SKp)/(1+SPhigh·((1/(1–CpredatorPrior2/1))–1)) 
 

    Subject to the condition that CPhigh=SKp when CpredatorPrior2=1. 
    And where SKp=(N1/N2) = Nprey[type I]/Nprey[type II]  at C=1. 
 

CA = SKa+(1–SKa)/(1+SA·((1/CpreyPrior1)–1)) 

    where SKa must be determined by observation or experiment.   
 

Rp = Ec·Rs·Ri·Rk·(CPlow·CPhigh)/CA 
 

Figure 2 - SPlow, SPhigh, and SA produce a primarily Type-II response 
 

 
 

Functions offered for CPlow, CPhigh, and CA may be modified in the light of 

observed data, but endpoints at Cprior=0 and Cprior=1 must hold.   

 
Figure 3 - Increase in SPlow and lower Ska produce a Type-III response 
 

 

 
You may reproduce these curves by calculating consumption versus prey for 

Np predators using C as the independent variable.   
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Plot N=C∙N1∙CA/(CPlow∙CPhigh) over the range [0≤C≤1] while N goes from 
zero to N2.  N1=Rc∙Np/Rp0 where Rp0 is the base Rp before factoring in the 

effects of prior consumption.  (ONLY for CpreyPrior=CpredatorPrior) 
 

Figures 2 and 3, especially figure 3 which includes a curve designated CP/CA, 

might be a bit misleading.  CP, effect of past consumption on predator ability 

to predate, and CA, the effect of past consumption on prey ability to avoid 
predation, are both plotted on the same graph.  However, predator past 

consumption and prey past consumption are unlikely to be the same.  While 

a calculation of CP/CA for the purpose of establishing a level of  predation 
proficiency within the CDPD model is correct, the CP/CA curve would be valid 

only if predator and prey populations experience identical past consumption.   
 

There is a mechanism that will tend to roughly link predator and prey 

consumption.  If predator consumption has been high, this implies a higher 

loss of prey population.  Surviving prey will have a greater share of their own 
resource and thus a higher level of consumption.  If predator consumption 

has been low for reasons other than low numbers of prey, the prey will 

increase in number reducing individual share of resource, lowering prey 
consumption level.  This comes with its own attendant time lag.   
 

Under steady state conditions, consumption levels for both predator and prey 
seek constant levels, perturbed only by stochastic events and the small 

oscillations generated by time lagged past consumption. 
 

Figure 4 shows a shaded area surrounding the rise to satiation representing 

the range of possible consumption response to increase in Nprey depending 

on past prey consumption between prey Cprior=0 and prey Cprior=1.   
 

Figure 4 – Range of CDPD response curves depending upon Prey Cprior 
 

 
 

Thus, the CDPD response offers a biologically based explanation for the 

observed spectrum of consumption functional response.  This is quite 
different from the response embodied in the oft used hyperbolic consumption 

functional response, a mathematical structure offering only the visual 

appearance of the functional response.  The CDPD response proposes to 

actually explain why such a response is observed based upon sound physical 
and biological principles.  Moreover, the CDPD response offers a hypotheses 

from which one may be able to make testable predictions regarding why the 
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response differs among predator-prey interactions, and how it may change in 

response to varying environmental conditions including the loss or 
introduction of other species into a specific predator-prey environment.   
 
 

Variations on Single Peak Events 
 

The first CDPD paper (Bentley, 2006) examined the CDPD dynamic in 
response to the single peak event scenario wherein it was found that 

increase in predation proficiency Rp beyond a threshold leads to collapse 

within CDPD.  Figure 5 shows the deterministic and stochastic CDPD 
responses which may be compared with the observed data of the St. Paul 

Island and St. George Island data.   
 
 
    Figure 5 – CDPD Single Peak Events  versus  Observed Single Peak Events 
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Both CDPD runs were generated using the same parameters, the only 

difference being a presumption that the vegetation in the second run 
possessed a small amount of regrowth capacity, as might be the case if the 

resource included grasses and shrubs, rather than being totally consumed as 

would a resource consisting of mosses and lichens in the first scenario. While 

calculating vegetation increase in the second run, 10 percent of the original 
vegetation was added at each iteration to account for regrowth. 
  

It would appear the above explanation for this variation on single peak 

events deserves further study.   However, one should first consider the CDPD 

response to past debilitation or satiation.    
 
 

Effects of Past Consumption on Single Peak Events (High Rp) 
 

A single peak scenario that includes the effects of past consumption shows 

oscillations in both consumption and population for all populations when 
modeled deterministically.  These oscillations vary depending upon rates of 

increase (Rb) and decrease (Rq) for all populations, and upon the time lags 

chosen for the effects of consumption on ability to predate.   
 

When the capricious effects of environmental stochasticity are added, the 

model demonstrates a broad spectrum of forms.  Some of these are abrupt, 
similar to the St. Paul event.  Others show the lingering plateau (figure 6) 

seen in the St. George event.  Many possess the double peaks (figure 7) of 

the Lapland data.  It would seem that the CDPD model when implemented 

using the CDPD response could go a long way toward explaining the differing 
observations without a need to invoke additional mechanism.   

 
Parameters for Figure 6 and 7   VEGETATION   HERBIVORE 

(Rb) Mass gain per increment     0.5     0.5 
(Rq) Mass loss per increment     0.2     0.2 
(Kd) calculate (D)     0.2     0.8 
(Rc) prey/predator     1     1 
(Rp) Predation Proficiency     1     0.7 

 

 

CDPD response parameters with LAG=2 and LAG=4 
 

 

(SPlow)       low PRED past Cpred     0.5       0.5 
(SPhigh)     high PRED past Cpred     0.05     0.05 
(SKP)   effect on PRED at Cpred=1     0.75     0.75 
(SA)          low PREY past Cprey     1     0.5 
(SKA)   effect on PRED at Cprey=0     0.5     0.5 
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           Figure 6 – Lingering Plateau result of past consumption  
 

 
 

Between approximately 1950 and 1975 a single peak event was observed in 

the Lapland Wildlife Refuge on the Kola Peninsula in Russia.  This event was 
examined by Lopatin and Abaturoy (2000), and more recently discussed in 

“Complex Population Dynamics” by Peter Turchin (2003). 

 
           Figure 7 – Double Peak result of past consumption 
 

 
 
The single peak curve shown in Figure 7 was generated stochastically using 

the same parameters for both the primary CDPD dynamic, and for the CDPD 

response as used for the curves in Figure 6.  The model run differs only in 
that it was run with LAG=4 and produces the double peak that appears to be 

a defining feature of the Lapland event.  This double peak appears in the 

majority of stochastic runs made at LAG=4.  It is more than possible that Lag 
time is not the only factor that can influence this dynamic.  Measuring 

biological response to past consumption should be a subject of further study.  

I have calculated Cprior as an average value of past consumption over the 

LAG time period.  The actual value of Cprior may more likely depend on a 
weighted average of past consumption, that is, most recent past 

consumption carrying more weight than consumption further past.  The 

manner of weighting past consumption should be a subject of study. The 
findings of such a study would most likely be species specific. 
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Effects of Past Consumption on the Steady State (Low Rp) 
 

Parameters for Figures 8-9  VEGETATION  HERBIVORE  PREDATOR 

(Rb) Mass gain per increment    0.5    0.6    0.6 
(Rq) Mass loss per increment    0.1    0.1    0.1 
(Kd) calculate (D)    0.2    0.8    0.8 
(Rc) prey/predator    0.5    0.5    0.5 
(Rp) Predation Proficiency    1    0.3    0.1 

 

 

CDPD response parameters with LAG=2 
 

 

(SPlow)     low PRED past Cpred    0.5      0.5    0.5 
(SPhigh)   high PRED past Cpred    0.05    0.05    0.05 
(SKP) effect on PRED at Cpred=1    0.5    0.5    0.5 
(SA)        low PREY past Cprey    1    0.5    0.5 
(SKA) effect on PRED at Cprey=0    0.5    0.5    0.5 

 

Figure 8  -  Deterministic Dynamic 
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Compare the deterministic model runs shown in figure 9, noting the 
oscillations due to the influence of time lagged past consumption in the 

model using the CDPD response.   

 
Figure 9  -  Stochastic Dynamic 
 

 
 

Comparing the stochastic runs in figure 9 shows that under steady state 

conditions past consumption in the model using the CDPD response increases 
the amplitude difference by around a factor of two.  However, total 

population change is no where near as great, thus leading me to conclude 

that the effects of past consumption have only a small effect on the steady 
state dynamic.  This is in contrast to the collapse scenario described earlier in 

figures 5, 6 and 7 where past consumption can significantly affect the shape 

of the event curve.  As Rp increases up into the range of Rp=0.38 to 

Rp=0.42, the model exhibits far greater population swings.   
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The effects of past consumption always reduce the value of Rp, pushing the 

dynamic in the direction of greater stability.  If one is measuring the average 
Rp of a real population, be aware that such a measurement includes the 

moderating effects of past consumption on that specific population.   

 

LAG represents the number of past time increments contributing to prey and 
predator Cprior which in turn produce the CDPD response.  LAG as used here 

is LAGlow for low end effects that cause debilitation.  LAGhigh has been set 

to one time increment, and even this may be too great insofar as satiation 
effects depend upon very recent past consumption.   
 

I have used LAG as a universal parameter applied to all of the populations in 
a single system only for the sake of simplicity at this stage of investigation.  

LAG should be specific to each population since metabolic function varies 

among species and especially between plants and animals.   
 

This study using the CDPD response has thus far demonstrated that 

regardless of any perturbations caused by the influence of past consumption, 
the primary dynamic of stability or collapse remains little changed.  The basic 

5 parameter CDPD model controls the dynamic.   
 

Oscillations, if they do not lead to collapse, should be considered a form of 

stability.  Whether the dynamic is stable or unstable depends, primarily upon 

consumption as controlled by Rp.  If predation proficiencies for all 
populations are below a level that would lead to collapse we find that 

environmental fluctuations, either regular as driven by planetary cycles, or 

sporadic, have great influence upon the overall dynamic.   
 

Deeper layers of mechanism within the dynamic certainly have influence as 

can be seen in model output for single peak events showing a greater range 
of forms, many reminiscent of what has been observed.  But the primary 

dynamic remains stability or collapse.  Contributions to the dynamic from the 

finer nuances of mechanism have less effect as one gets further from the 
primary factors.  This is not to say the fine details may be disregarded.  If 

the main action is taking place close to the threshold between stability and 

collapse, a mechanism at a lower level may push the dynamic one way or the 

other.  And, may potentially offer explanation for perturbations observed in 
the natural dynamic.  Within the CDPD response model, even large changes 

in parameter value at this depth of mechanism appear to have little effect on 

the primary dynamic in model runs so far conducted.    
 

 

Presence of Predators and other Environmental Influences 
 

CDPD has invoked the mechanism of predator presence upon prey behavior 
to explain changes in ‘predation proficiency’ Rp by means of Ec to account for 

erratic population changes, including single peak events.  Thus it is not too 

much of a stretch to extend such a behavior changing mechanism in the 

predation environment to the environment affecting births Eb and deaths Eq.   
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Nelson, Matthews, and Rosenheim (2004) measured the effect that 

behavioral changes in prey pea aphids (Acyrthosiphon pisum) induced by the 
presence of predator damsel bugs (Nabis spp.), had upon prey survival and 

reproduction.  Their results compare rates of pea aphid increase in the 

absence of damsel bugs, in the presence of surgically altered damsel bugs 

that could not kill or consume pea aphids, and in the presence of unaltered 
damsel bugs.  Rates of pea aphid increase in the presence of disarmed 

damsel bugs, while greater than pea aphids among unaltered damsel bugs, 

was significantly lower than for pea aphids with no damsel bugs present in 
their environment. 
 

Predators, even when they are intentionally handicapped to the extent that 
they cannot harm prey, will induce avoidance behavior in their prey which 

can reduce prey survival and reproduction.  This can take the form of missed 

mating opportunities and potentially lethal avoidance actions.  Pea aphids 
have been observed jumping off the leaf on which they are feeding when a 

damsel bug appears.  If such action lands them in a bad place, for instance 

on the hot, dry ground below rather than on another leaf, they are more 
likely to perish.  Even if they make it back to their food supply, 

environmental stress and interruption to feeding can be debilitating.  This 

work of Nelson et al. followed predictions of such behavior by others (Spitze 

1992, McPeek and Peckarsky 1998, and Kuhlmann et al. 1999).  Tamaki et 
al. (1970) demonstrated predator-induced suppression of prey population 

growth in laboratory experiments, also using pea aphids.   
 

Interactions with the environment other than predation, including 

interactions with other species such as the above described predator-prey 

interaction investigated by Nelson et al., are implemented in CDPD by the 
insertion of appropriate functions into E variables (Eb, Eq, Ec).  When some 

condition such as the presence of other populations or abiotic state makes 

the environment better or worse for a particular population, and when the 
effect of an increasing condition asymptotically approaches a LIMIT, the 

appropriate function expressing this interaction will take the following form:   
 

      Einteraction = LIMIT+(1-LIMIT)/(1+CONSTANT·(condition)) 
 

When condition makes things worse for a population then LIMIT<1 and 

LIMIT is the maximum degradation that condition will cause to a population’s 

environment E.  If it is possible for a condition to approach a point where 
that condition becomes lethal one would set LIMIT=0.   
 

When condition makes things better for a population then LIMIT>1 and LIMIT 
is the maximum improvement that condition can make to a population’s 

environment E.   
 

In either case, condition represents either an absolute magnitude or a 

deviation from a norm.  A function to properly profile the magnitude or 

deviation may also stand in the place of condition.  Examples of a condition 
could be a population mass or count, foliage density or terrain complexity 

enumerated on some scale, turbidity of water, humidity, or any other factor 
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that may affect the well being of a population but for which there is 

diminishing impact for each increment of additional condition.   
 

CONSTANT is a constant of proportionality scaling the numerical value of a 

measured condition to a measured effect upon the subject population with 
units that are the inverse of whatever units are associated with condition. 
 

When the range of a possible environmental deviation X (difference between 
benign value and observed value) can reach or exceed a lethal deviation 

XLIMIT such as a pollution level or temperature that is too hot or cold for the 

continued survival of a population, the appropriate function that expresses 
this interaction would take the following form:   
 

      Einteraction = 1/(1+SKEW·((1/(1–X/XLIMIT))–1))   …for  0≤X<XLIMIT 

      Einteraction = 0                                                 …for      X≥XLIMIT 
 

SKEW is a unitless number that describes the manner in which a population 

reacts to a change in X as X approaches XLIMIT.  If SKEW=1 the effect on the 

population will be linear as X goes to XLIMIT.  Values of SKEW<1 model a mild 
reaction to increasing X at small values of X, but a rapidly increasing reaction 

to X when X gets close to XLIMIT.   
 

Eb for increase, Eq for decrease, and Ec for the predation environment may 

all respond quite differently.  And, E variables (Eb, Eq, Ec) may be composed 

of multiple Einteraction factors. 
 

Considering the manner in which environment impacts the system, Eb for 

mass gain and Eq for mass loss that act exactly like changes in C, and Ec, a 
building block for Rp making it a factor in the level of C, most environmental 

interactions, aside from perhaps introducing oscillations, appear to do little to 

force the CDPD dynamic very far off course.  The exception to this would be 
environmental occurrences of great intensity, deforestation for example, that 

force E toward 0, which will cause a direct population drop just as occurs 

when C approaches 0.   
 

 

Oscillations  
 

Oscillations of every cause may be observed using CDPD.  Firstly, there is 

stochasticity – changes in environmental conditions of a random nature.  One 

could argue that these changes are not truly random, each change the effect 
of an underlying cause and thus all part of a more complex dynamic.  While 

true up to a point, this is like the weather, an element of the environment 

responsible for much stochasticity in and of itself.  One can strengthen the 
validity of a weather prediction only at a cost of greatly increased 

measurement.  This pursuit rapidly leads to diminishing returns and would, 

were the effort even possible, eventually bring us up against the fuzziness of 
quantum mechanics which for all that tremendous effort would still leave us 

with uncertainty.  As science continues to explore the vast arena of life 

scenarios we shall continue to uncover mechanisms accounting for many 
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interesting and surprising phenomena.  At the same time there will remain a 

background of stochasticity.   
 

CDPD applies stochasticity through environment variables Eb, Eq, and Ec.  

Stochasticity is the application of both positive and negative forces according 

to some pattern of probability for the occurrence of effects at different 
magnitudes.  I have used for demonstration a ‘normal distribution’ of effects 

whereby large effects have a smaller frequency of occurrence than do effects 

of a lower magnitude.  After deciding on a frequency of distribution, one 
must determine impact upon a population caused by effects of a particular 

magnitude so that one may properly scale such random effects within a 

model to emulate an observed dynamic.   
 

Stochasticity occurs over time periods that are both greater and lesser than 

whatever time increment may have been chosen for a model.  Application of 

stochasticity for multiple increments is a simple programming task.  
Stochasticity occurs at all time scales and may impact your choice of  time 

increment.   

 
The CDPD model of ‘consumption functional response’ (the CDPD response 

discussed above) employs time lagged effects of past consumption as they 

are likely to affect current consumption.  Such time lags produce oscillations 
as seen in the above discussion of ‘Effects of Past Consumption’.  Depending 

upon rates of fecundity, mortality and time LAG, CDPD shows oscillation 

around a stable point that may persist or die out under deterministic 

conditions.  This is difficult if not impossible to observe in nature because 
stochasticity forces displacements that keep the oscillations going.   

 

Rp is constantly in flux in the natural world, changing not just in response to 
past consumption but in response to the weather and all the seasonal 

changes in flora and fauna.  The CDPD model thus far demonstrated, with 

the exception of those instances where the CDPD response has been 
employed, treats Rp as a constant that may be considered an average of 

fluctuations over time.  Model correspondence to population time series thus 

far appears to validate this approach, but one should keep this in mind.   

 
As Rp increases, population swings become more pronounced.  Beyond a 

certain point, even with stochasticity and the effects of past consumption 

included in the model, the dynamic turns to collapse.  Approaching 
extinction, a population may be saved from that fate within a refuge from 

which it can later recover in the event that environmental changes lower Rp.  

Thus, the stable range of Rp may be greater than indicated by CDPD model 

runs without refuges.   
 

Beyond stochasticity and in addition to time lagged past consumption 

affecting current consumption, there are likely to be a great number of other 
mechanisms that generate time lagged negative feedback to fecundity, 

mortality, and consumption.  Many plants express toxins in their edible parts, 
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not on a constant basis but seemingly in response to predation.  Generation 

of toxins represents a metabolic load on the organism.  Producing toxins only 
in response to need is an efficient way to utilize available resources.   
 

Surviving members of a population under a heavy predation load have access 
to a greater share of their resource, likely increasing consumption.  Greater 

consumption makes production of metabolically expensive toxins more 

affordable allowing the plant to increase production of these substances.  
Other mechanisms may involve the surviving portion of the prey plant, and 

perhaps even neighboring plants, responding to released chemical agents 

that are unique to the predators or to the tissue damage of predation.  This 

response could be the generation of chemicals or structures that inhibit the 
predator or attracts predators of the predator, or perhaps, emulates a signal 

that alerts a predator to the presence of their own predator.  Much of this 

has been observed (Karban 2009). 
 

There are a great many events in nature, some large portion of which are 

quite regular in period, and others which occur often but which may be 
aperiodic.  These events are sufficient in and of themselves to produce 

oscillations, often of a dramatic nature, changing populations by several 

orders of magnitude.  Such drivers would include seasonal swings in 

temperature, moisture, and sunlight.  Others will include periodic, or 
aperiodic infestations of predators, parasites, and disease vectors.  

 
 

Periodic Oscillations  
 

Figures 10-11 demonstrate a CDPD model of response to seasonal resource 
availability where the resource (NA) for a rapidly reproducing population is 

implemented as a simple sine wave.  This model assumes that as the 

resource approaches its minimum the population supported by that resource 

will not drop to zero but will instead drop into a refuge that will maintain the 
population, in the form of active individuals, spores, eggs, or seeds at a level 

that for the parameters used in this model turns out to be less than 0.0014 

of maximum population mass for the deterministic run shown in Figure 10.   
 

Figures 10 and 11 were run at 12 increments per year using the following 

parameters:   
 
Parameters for Figures 10-11 Organism supported by seasonal resource 

(Rb) Mass gain per increment                2.5 
(Rq) Mass loss per increment                0.2 
(Kd) calculate (D)                0.2 
(Rc) prey/predator                5 
(Rp) Predation Proficiency                0.2 
     Refuge (mass units)                0.1 
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Figure 10  -  CDPD oscillation – seasonally triggered deterministic run 
 

 
 

Stochasticity occurs at all scales.  The model run in Figure 11 is subject to 

random displacement at the increment level, 12 per year, the average value 
of which will vary little from year to year, and additional stochasticity on a 

yearly scale (every 12 increments), the period over which resource (NA) 

completes 1 cycle. This more closely emulates a natural dynamic of change 
from year to year.   

 
Figure 11 - CDPD oscillation – seasonally triggered stochastic run 
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An example of a seasonally driven population oscillation may be seen in 

Figure 12, a time series graph of observed Peridinium gatunense 
phytoplankton density from 1970-1999 in the waters of Lake Kinneret (Sea 

of Galilee), Israel, made by Utza Pollingher and Tamar Zohary (Huppert et al, 

2002, and also Berman et al, 1995).   

 
Figure 12 - Lake Kinneret time series (Utza Pollingher and Tamar Zohary data) 
 

 
 

This is only a demonstration offered to show the ability of the CDPD model to 

readily produce oscillations in response to a seasonal fluctuation.  This paper 
makes no claim that the dynamic observed in the Lake Kinneret data is 

totally explained by the simple assumptions of the above demonstration.  

 
I refer here to a seasonal fluctuation and began this exercise by providing a 

resource NA that fluctuates in the form of a sine wave subjected to a 

stochastic environment E.  I could just as easily have calculated B and Q by 
providing NA in a constant manner while allowing the environment E to 

fluctuate in the form of a sine wave, overlaid by stochasticity.  This would 

have produced a similar result.  The situation in Lake Kinneret is likely to be 

some combination, resource fluctuation and environmental fluctuation.  A 
careful evaluation of Peridinium gatunense to determine its sensitivity to the 

many aspects of its environment along with a careful measurement of those 

environmental factors and availability of resource in Lake Kinneret should 
more fully explain the observed dynamic.   
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Aperiodic Oscillations - 2-trophic level system  
 

Parameters for Figures 13-16 VEGETATION HERBIVORE 

(Rb) Mass gain per increment    0.5   0.5 
(Rq) Mass loss per increment    0.2   0.2 
(Kd) calculate (D)    0.2   0.8 
(Rc) prey/predator    1   1 
(Rp) Predation Proficiency    1   0.42 (0.33 Fig. 16) 
 

 

CDPD response parameters with LAG=1 (Figures 14-15 only) 
 
 

(SPlow)     low PRED past Cpred    0.5   0.5 
(SPhigh)   high PRED past Cpred    0.05   0.05 
(SKP) effect on PRED at Cpred=1    0.75   0.75 
(SA)        low PREY past Cprey    1   0.5 
(SKA) effect on PRED at Cprey=0    0.5   0.5 

 

Figure 13, run deterministically and generated without time lagged past 

consumption, shows an unstable system where populations collapse to zero.   
 
Figure 13  -  High RpH 2-trophic level system run deterministically and (LAG=0) 
 

 

 

Figure 14 below, a deterministic run incorporating the effects of time lagged 

past consumption, shows a stable system because effects of past 
consumption lower the effective Rp.   
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Figure 14  -  High RpH 2-trophic level system run deterministically with (LAG=1) 
 

 

 

Figures 15-16 introduce stochasticity and increase the run length to 1000 

time increments.  Introduction of stochasticity generates an aperiodic 
oscillation that is quite different to the slight oscillation seen in the 

deterministic run of figure 14.  
 
Figure 15  -  High RpH 2-trophic level system run stochastically with (LAG=1) 
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Removing the CDPD response (LAG=0) and compensating for this removal by 

reducing RpH from 0.42 to 0.33, thus returning to the simple 5 parameter 
model, produces a similar aperiodic oscillation in figure 16.  Population shifts 

occur less rapidly, and as seen in the trajectory plots of figure 16, coupling 

between predator and prey is tighter when time lagged past consumption is 

not included in the model, but the dynamic retains largely the same quality 
as the results with time lagged past consumption seen in figure 15.   

 
Figure 16  -  High RpH  2-trophic level system run stochastically with (LAG=0) 
 

 
 
The only parameter change between figures 15 and 16 is a decrease in 

predation proficiency from RpH=0.42 to RpH=0.33 in compensation for 

removing the effects of past consumption (LAG=0).  Population shifts occur 

with less vigor, and as seen in the trajectory plots of figure 16, coupling 
between predator and prey is tighter when time lagged past consumption is 

not included in the model, but the dynamic retains the same quality as the 

run with time lagged past consumption seen in figure 15.   
 

You will notice in figures 15 and 16 that when the predatory population 

exceeds a certain point, consumption by the resource population drops below 
C=1 sharply limiting further population increase by either population.  Below 

this maximum the resource population experiences full consumption (C=1).  

But at high RpH, the predatory population places such a high downward pull 
on the resource population that both populations remain tightly coupled, 

moving up and down proportionally.  This tight coupling is seen in predator 

consumption which tracks a level of approximately C=0.65, for the 

parameters used, independent of population size.  Consequently, below the 
upper limit set by the resource population, forces for population increase are 

only slightly greater than forces to decrease.   
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This places exogenous forces in control.  Below the upper limit the common 

path taken by both populations resembles a random walk very similar to the 
random runs demonstrated in figure 20.  However, during a run of adverse 

conditions a population does not easily ‘walk’ to extinction.  This is because 

environmental forces act proportional to population size.  A large population 

will see larger absolute losses than a small population and this can also be 
seen in figure 20.  An environmental insult causing a population loss of ten 

percent in a population numbering 1000 would be 100 individuals.  But, if the 

population had been 100, the proportional loss would be only 10 individuals.  
Please remember that CDPD works with population mass rather than a count 

of individuals, but the idea is exactly the same. 
 

This proportional effect tends to make recovery from a drop slower than the 

drop.  A population of 1000 encountering a condition causing a 50 percent 

loss drops it to 500.  Improved conditions during the next time increment 
that cause a 50 percent increase bring it back to only 750.  Populations may 

encounter a further difficulty.  Bad conditions can drop a population 

precipitously, but even under extremely good conditions that population will 
be limited by a maximum reproduction capability.   
 

 

Aperiodic Oscillations - 3-trophic level system  
 

Figures 17-19 demonstrate another interesting interaction producing extreme 
oscillations only when subject to stochasticity.  This system is unstable 

deterministically or when perturbed only by a regular oscillation.  The system 

displays great persistence taking the form of sustained aperiodic oscillation 
only under conditions of random perturbations.   
 

The following analysis describes the dynamics observed in this 3-trophic level 
system where RpH for the herbivore and RpP for the predator have been 

pushed to the collapse threshold.  This dynamic may be observed in model 

runs that are stable or unstable deterministically.  Deterministically unstable 
systems slowly collapse until one observes extinction of first the predator and 

then the herbivore.  The run in Figure 17 shows a deterministically unstable 

3-trophic level system.  
 
Parameters for Figures 17-19  VEGETATION  HERBIVORE  PREDATOR 

(Rb) Mass gain per increment    0.5    0.5    0.5 
(Rq) Mass loss per increment    0.2    0.2    0.2 
(Kd) calculate (D)    0.2    0.8    0.8 
(Rc) prey/predator    1    1    1 
(Rp) Predation Proficiency    1    0.35    0.45 
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Figure 17  -  3-trophic level system at high RpH and RpP – deterministic run 
 

 

 

Figure 18 represents an initial run of the same system where stochasticity 

has been introduced at all three trophic levels.  The run displays 1000 time 
increments, same as in the deterministic run in Figure 17, but it is evident 

that the system has not collapsed.   
 

Figure 18  -  3-trophic level system at high RpH and RpP – stochastic run 
 

 
 

The second notable feature of figure 18 is the similarity of the 2nd and 3rd 

trophic levels in both population dynamic and consumption to the 2-trophic 
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level system in figures 15-16.  However, trophic level-1, the resource for this 

system, possesses an interesting dynamic of its own.   
 

Figure 19  -  3-trophic level system continuation (increments 3000-4000)  
 

 
 
Figure 19 continues the stochastic run begun in figure 18 showing increments 

from 3000 to 4000.  Swings in population level are large and aperiodic.  The 

third trophic level population tracks the second level closely and the heavy 
load it imposes upon the second level, high enough to drag the level-2 

population to extinction under deterministic conditions when consumption 

drops just a little below satiation, is necessary to the emergent dynamic 

illustrated here.  Model runs (not displayed) introducing the effects of past 
consumption using the CDPD response do not alter the observed dynamic 

qualitatively. 

 
This system appears to randomly transition between two phases when 

stochasticity is introduced.  I have found stochasticity need only be imposed 

upon level-2, while the top and bottom trophic levels continue to be modeled 

deterministically.  However, the system appears most robust when there is 
stochasticity at every trophic level.  During the first of these two phases, and 

the phase of shortest duration, all three trophic levels tend to track together 

proportionate to each other, generally dropping in a fairly steady manner, 
and at a rate much faster than if there were no stochasticity.   

 

Populations can drop to very low levels before any transition to the alternate 
phase, and there is the possibility that level-3 will go to extinction causing 

level-2 to follow if populations drop too low before a phase change occurs.  

This has been observed in the model, but only when stochasticity has been 

reduced to a coin toss of two values.  It is only during this phase that level-2 
consumption becomes erratic, tending to drop below C=1.   
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At some point in this downward course, with all populations heading toward 
extinction, the level-2 population, subject to stochasticity, will during some 

random interval experience a string of bad luck unrelated to the level of 

resource and due only to stochastic forces.  Such negative environmental 

misfortunes may be one, or a combination of things, and not necessarily the 
same things at each occurrence.  Examples would be anything from extreme 

weather conditions to disease or parasitism.  When such a misfortune 

appears to affect a widely distributed population, where local weather 
conditions vary significantly from one portion of the population to another, a 

likely cause might be communicable disease.  This could tend to ‘synchronize’ 

the observed dynamic over large distances. 
 

During this interval of misfortune the level-2 population will encounter 

negative environmental influence of such strength and for sufficient duration 

that level-2 population drops, lowering the weight of predation upon level-1 
that has up to this point been holding the level-1 population in thrall to the 

downward pull of level-2 consumption.  This gives the level-1 population 

opportunity to rise, and to continue to rise above that point where level-2 
predation had kept level-1 population in check.  This is the point where phase 

change occurs.  Level-1 population climbs to high levels pushing level-2 

consumption to C=1.  The level-1 population continues to grow until it 
becomes limited by its own finite resources.  In the brief interval before 

level-1 population encounters limitation, level-2 and level-1 consumption 

both go to C=1 with level-1 consumption dropping to C<1 at limitation.   

 
While this is going on, level-3 population continues to take the same heavy 

toll on level-2 population.  From the beginning of this phase, level-2 and 

level-3 populations enter a dynamic identical to the aperiodic 2-trophic level 
system previously described; a random walk that sooner or later brings the 

level-2 population to a point where its consumption of the level-1 population 

becomes great enough to once again enthrall that population, and it is at this 
point where phase change transitions back.  Level-1 consumption jumps to 

C=1, level-2 consumption drops below C=1, level-3 consumption remains 

about where it was at C<1, and all three populations begin the sharp, 

lockstep descent characteristic of this phase of the dynamic. 
 

It is easy to think about this dynamic in terms of the level-1 population being 

‘captured’ by the level-2 population.  The level-1 population wins ‘release’ 
when level-2 falls on hard times, but after ‘release’ level-2 and level-3 begin 

their largely lockstep random walk that sooner or later brings the level-2 

population to a point where it once again is able to pull the level-1 population 

back into its clutches. 
 

The above description of level-2 predation holding level-1 population to a 

low, proportionate level within one phase of the dynamic sounds like top-
down control which I have shown in my previous paper (Bentley, 2006) to be 

a self-eliminating scenario and thus not viable as a population control 
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mechanism.  This continues to be true because if this phase persists, the 

dynamic will definitely run to extinction.  Fortunately for the persistence of 
this dynamic there is a very strong tendency, enabled by stochasticity, to 

quickly transition back to the alternate phase where top down forces are no 

longer pulling populations toward extinction, thus bringing stability to the 

overall dynamic.   
 

 

*** 
 

 

The scenarios demonstrated in figures 15-16 and figures 18-19 show a 
dynamic that is constrained by resource limitation at the top and resistant to 

extinction at the bottom where hard winters, dry spells, windfalls of resource, 

episodes of disease or parasites, fortuitous confluences of nutrients and 

sunlight, drops or increases in competitor or predator populations, and all the 
other uncountable exogenous forces to which a population is subject produce 

a wandering aperiodic oscillation with remarkable similarity to a great many 

populations observed in nature (NERC Centre for Population Biology, 1999).   
 

Demonstration of a random dynamic 
 

After examining the dynamic of the systems demonstrated in figures 15-16 
and figures 18-19 it appears random forces dominate the dynamic between 

population levels of zero up to the limiting point where resource consumption 

drops from C=1 to C<1.  Exploring this, I removed the code for the CDPD 
mechanism emulating living populations and substituted code for a 

mechanism to examine the dynamic resulting from random forces.   

 

This mechanism, over the entire range of N at each incremental evaluation, 
subjects N to a slight upward force expressed as N=N+(0.015·N).  Above a 

level of Nlimit, N is subject to a downward force on the growth of N 

expressed as N=N-((N-Nlimit)/2).  Below Nlimit, N is subject only to the 
previously described slight upward force, similar to a living population when 

C=1, and to up or down forces of a random value that act proportional to N.   
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Figure 20  -  Random Runs 
 

 
 

These random runs produce a range of aperiodic oscillations that look very 

similar to the dynamic seen in figures 15-16 and figures 18-19.   
 

Returning to the CDPD model, the behavior of stochastic runs at high Rp, 

both with and without taking into account time lagged effects of past 
consumption, shows a remarkable similarity to a great many of the time 

series data sets that may be found in the NERC database (NERC Centre for 

Population Biology, 1999).  
 

Some of the NERC studies show population numbers dropping closer to zero 

than shown in the CDPD runs.  Population studies in the wild are not as 

simple as counting eggs in a carton.  A study area may account for only a 
small portion of the actual population range.  Also, immigration and 

emigration to and from a study area may push population counts to both 

greater and lesser densities within the study area than would be true for the 
total population as has been observed in metapopulation dynamics.   

The NERC Centre for Population Biology in the UK has established a global 

population database with over 5000 time series data sets.  I have examined 
only a small portion of this database but have found a very significant 

number resemble the CDPD aperiodic oscillations shown above.  Figure 22 

offers a few of these NERC data sets for comparison.  You may note, as 

evidenced by my choice of largely common species, I have not chosen 
examples based on what best fits my thesis.   
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Figure 21 – NERC Data Sets 
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Summation 
 

The foregoing presents a single model and the predictions of that model 

when applied to the broad range of conditions found in the natural world.  As 

demonstrated, CDPD displays great fidelity replicating natural populations 
under conditions where one would expect to observe collapse, steady state, 

or periodic oscillations.  In the course of this investigation there also came to 

light the aperiodic oscillations demonstrated above as the model prediction 

for the dynamic under conditions of predation proficiency close to the 
threshold of collapse, a likely condition under the pressure of evolution.  This 

dynamic, or at least the appearance of this dynamic, may be observed in the 

NERC data base.   
 

While gathering data is an essential part of ecological study it is equally 

important to make sense of that data.  Ecology needs a robust unifying 
theory of fundamental population dynamics, and the insight that comes with 

such a theory.  Data by itself, no matter how much one massages that data 

with statistical analysis, will not produce such a theory.   
 

Data on the positions of the planets constituted a substantial data base 

several thousand years ago leading to a theory of epicycles that was highly 
predictive for the future motions of those studied astronomical bodies.  But 

this approach consisted of a separate little model for each planet.  Aside from 

structural similarities, there was no overall mechanism that explained and 
tied this approach together, thus no real understanding and no predictive 

ability for any newly discovered heavenly body.  A change in perspective, and 

rather deep insight by Isaac Newton finally brought understanding and great 

predictive power with the theory of gravitation.   
 

Population ecologists, when pressed on the issue of a unifying theory, often 
speak words to the effect that, "we have many models for different things."  

Unless we wish for epicycles, that is not good.  Instead, I believe we need to 

search for a fundamental unifying theory underlying the interactions of all 

living things.    
 

CDPD is such an attempt.   
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*Footnote (see R versus Consumption above):  

 

Proposal of an experiment to measure Rate (R), an organism’s 
increase or decrease, as a function of Consumption: 
 
This is not meant to be a formal experimental protocol, just a brief outline from 
which an experimental protocol might be developed that should be able to 

demonstrate the response of an organism to consumption level for births and deaths.   

 
Total mass of the experimental population is the variable of concern and it must be 

possible to make regular measurements of this variable.  Processes of both gains and 

losses will be going on simultaneously.  The organism should probably be large 
enough that actual counts of live and dead individuals may easily be made, 

photographically or otherwise.  However, I would certainly not discount the use of 

microorganisms if one can figure out a way to determine population mass, be able to 
distinguish living from nonliving individuals, figure out how to remove and measure 

the nonliving on some regular schedule, and do all this without changing the test 
population’s normal rates of increase and decrease.     

 

Insects might be useful except for the complication of several life stages, each of 
which has its own set of parameters for gains and losses and thus complicates 

measurement since measuring those parameters would be part of the experiment.  

Also, most insects have a very limited adult lifespan.   
 

I originally had guppies in mind, but I am not an experimentalist.  In any case, 

guppies are omnivores and because of the measurements that one need make, I 
believe one should rather choose an herbivore.  I would expect that anyone thinking 

about performing such an experiment would likely work with an organism with which 
they already have experience, and know what is necessary to maintain a healthy 

population.   

 
In any case, during the experiment one must be able to remove dead individuals in a 

regular and timely manner and be able to make a measurement of the mass of such 

individuals undistorted by the presence of waste products or uneaten food.  I expect 
there will be many problems of a similar nature in the design of such an experiment.  

For instance, one would not want to choose an organism that eats its own kind or its 

own dead.   
 

Population mass calculations must be made at regular intervals.  This is necessary to 
calculate the amount of food the experimenter must provide during each feeding 

interval to maintain a constant level of consumption.  The experimenter must take 

into account the consumption functional response of the population and adjust the 
amount so that the mass of food actually 'consumed' by the population remains at a 

set fraction of population mass.   

 
All the above needs be considered in the choice of experimental organism.   
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DETERMINATION OF SATIATION LEVEL 

 
Determination of satiation level does not appear to lend itself to easy measurement 

due to the effect of 'consumption functional response', another unknown.  However, 

it should not be too difficult to determine several related data points.  The 
experiment proposed, sketched out above, should allow the experimenter to 

measure rates of gain (addition of new mass) and rates of loss (mass contained in 
the death of individuals) at specific levels of sustained consumption (set ratio of 

available food mass per total population mass).  Each change in this ratio should 

provide new data points for both 'rate of gain' and 'rate of loss', and, of course, for 
the combination of these, the overall rate of absolute gain or loss.  During the 

conduct of preliminary runs, the feeding ratio that delivers zero net gain should 

become apparent.  Appropriately chosen feeding ratios above and below this point 
should disclose a line of points that CDPD predicts should begin to drop sharply as 

the feeding ratio approaches zero. 

 
Steady increases in the feeding ratio above the point of zero net gain should reveal a 

gradual tapering off in gain rate and death rate to the point of no change in these 
rates regardless of how far the feeding ratio is increased indicating that available 

resource has exceeded satiation level.   

 
Throughout this procedure one should note the difference between amount of food 

provided, and amount actually consumed during a feeding interval.  Depending on 

the physical nature of the food provided, it may be possible to separate uneaten food 
from the population's waste products and thus make a measurement of this 

difference for different feeding ratios.  The point where consumption no longer 

increases despite an increase in the amount of food provided reveals satiation. 
 

 

PROCEDURE 
 

Rates calculated for gains and losses would be as a fraction of population mass at 
the beginning of the 'rate period' rather than 'run period'.  Rate period should start 

at a point in time later than the beginning of the 'run period' (run time at a constant 

consumption level) to avoid transition error due to change from previous 
consumption level.   

 

Each 'rate period' would be composed of a number of 'feeding periods'.  Feeding 
period intervals would be dependent upon the physiological needs of our chosen 

experimental organism.  And as described above, each feeding period would be 

preceded by the removal and recording of mass of dead individuals from the 
previous period, and a measurement of remaining population mass to determine 

amount of food to be administered.   
 

N0 = (population mass at the start of 'rate period') 

N1 = (population mass at the end  of 'rate period') 
 

Nq = (total mass of dead individuals during 'rate period') 

 
RATEb = (mass gain rate) = (Nq+N1-N0)/N0 

RATEq = (mass loss rate) = Nq/N0 
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RATE  = (combined effect of gains and losses at a specific level of C) 

RATE  = RATEb - RATEq    = (N1-N0)/N0 
 

Rb (as used in CDPD) = (RATEb measured at C=1)  satiation level 

Rq (as used in CDPD) = (RATEq measured at C=1)  satiation level 
 

Naturally, to the extent that resources permit, multiple runs should be conducted in 
parallel or sequentially to minimize error. 

 

RATE as a function of consumption C should be the result of greatest confidence.  
RATEq and thus RATEb will be more difficult to measure as I expect there to be 

problems determining mass of very young offspring, dead offspring that become lost 

among waste products, and mass loss from debilitated living individuals, to name a 
few of the problem areas.   

 

Implicit in the above, and openly stated in my paper (Bentley, 2006), are the 
assumptions that maximum mass increase and minimum mass loss will both coincide 

with consumption at satiation.  While the concept of CDPD does not loose validity if 
these assumptions are wrong, an exploration of these assumptions in the above 

experiment should help to clarify the issue.   
 
 
 
 
---------------------------------- 

Computer programs for the dynamics shown in the figures, plus many more, 
are available from the author.   

 

Richard Bentley  (518-359-9300)  bentley@northnet.org  


